
Optimization of a Model to Predict Salinity Intrusion in San
Francisco Bay Estuary Using a Genetic Algorithm

T.Rajkumara and David E. Thompsonb

a SAIC, NASA Ames Research Center, M.S. 269-2 Moffett Field, California 94035
(rajkumar@mail.arc.nasa.gov)

b NASA Ames Research Center, M.S. 269-2 Moffett Field, California 94035
(dethompson@mail.arc.nasa.gov)

Abstract: Salinity intrusion is a significant issue in the San Francisco Bay Delta because this estuary
contributes substantially to fresh water supply for much of northern California. Traditionally, salinity along
the estuary has been measured using monitoring instruments installed at various locations within the
Sacramento-San Joaquin River Delta system, and these measurements are used to predict future conditions
and evaluate the water management alternatives. The California Department of Water Resources Delta
Simulation Model (DWRDSM) is used for this type of analysis. DWRDSM is an unsteady one-
dimensional hydrodynamic and salt transport model. It can provide estimates of salinity at almost any
location within the Bay-Delta system. However, like many numerical models, when simulating the
dynamics of a large complex system, the processing time can be extremely long, which makes it difficult to
evaluate a large number of management scenarios in a short time. Statistically-based models of the flow and
salinity have been tried and found lacking; classical time series analysis is often linear or requires
transformation to a stationary time series that renders the resulting model unsuitable, since the salinity
intrusion problem is a complex non-linear problem. Consequently, there remains a need for a reliable and
fast method to predict salinity intrusion in the Sacramento-San Joaquin River Delta system. In this paper,
such a method is advocated: Genetic Algorithms (GA) are used to optimize a previously built Artificial
Neural Network (ANN) that reliably predicts periodic salinity intrusion in the San Francisco Bay Estuary.
Results indicate that the GA provided an efficient method of optimizing the ANN model to predict salinity.
The reliability of the ANN using the GA includes prediction of salinity to an accuracy of ±10% at hourly
intervals for any time period in the year.

Keywords: Salinity intrusion; San Francisco bay delta modeling; Neural network; Genetic algorithm
optimization

1. INTRODUCTION

Sources of freshwater should be managed in a
sustainable manner that will improve socio-
economic development. The Sacramento-San
Joaquin delta is a unique and valuable resource and
California’s water supply network. Water projects
divert water from the delta to meet the needs of
approximately two-thirds of the state’s population.
In addition to these exports, there are about 2000
local irrigation diversions located within the delta.
Most of the remaining water constitutes the final
delta outflow into San Francisco Bay. Saline
water from the bay is normally kept from intruding
into the delta by these freshwater outflows.
Traditionally salinity is calculated using
monitoring instruments installed at the boundary
of the delta. By using this data, future conditions
can be predicted to evaluate the remediation
alternatives. The California Department of Water

Resources Delta Simulation Model (DWRDSM)
[Chung 1999] is used for this type of analysis.
DWRDSM is an unsteady one-dimensional
hydrodynamic salt transport model. However, like
many numerical models, when simulating the
dynamics of a large complex system, the
processing time can be extremely long, which
makes it difficult to evaluate a large number of
management scenarios in a short time.
Statistically-based models of the flow and salinity
have been tried and found lacking due to inbuilt
linearity [Winkler 1985]; classical time series
analysis is often linear or requires transformation
to a stationary time series which renders the
resulting model unsuitable, since the salinity
intrusion problem is a complex non-linear
problem. Consequently, there remains a need for a
reliable and fast method to predict salinity
intrusion in the Sacramento-San Joaquin River

Delta system. In this paper, such a method is
advocated: Genetic Algorithms (GA) [Holland
1975] are used to optimize a previously built
Artificial Neural Network (ANN) that reliably
predicts periodic salinity intrusion in the San
Francisco Bay Estuary (Figure 1) [Chung 1999;
Rajkumar and Johnson 2001].

Our specific objective is to predict the salinity and
stage at the Carquinez Strait (RSAC054) for
hourly intervals. We selected the Carquinez Strait
because it lies at the western edge of Suisun bay
and is generally near the location of biologically
productive salt-fresh water mixing zone. Also,
monitoring data are available for Carquinez Strait,
which allows model development and testing.
Over 20 different input parameters were evaluated
to characterize the dynamics of flow and salinity in
the system using the ANN [Masters 1993].
Different neural network architectures and learning
algorithms were tried to predict the best salinity
intrusion model at any given point. Out of all
training algorithms tested, the back propagation
method using the Levenberg-Marquardt algorithm
was the best predictor of salinity intrusion
[Rajkumar and Johnson 2001]. However, it took
many hours to train the neural network. To
increase the efficiency of the training, GA’s were
used to autonomously select both the parameters
for training and the input data necessary to capture
the dynamics of the system [as in Miller et. al
1989]. GA’s offer a faster and more intelligent
methodology for searching for optimal
combinations of parameters for ANN’s when
compared to exhaustive searches of all
combinations of parameters [Goldberg 1988]. Our
GA searched through combinations of ANN input
parameters looking for the set of inputs that
optimized the training criteria (minimum error of
tolerance in neural network). The GA evaluated
the usefulness of each input parameter in
conjunction with all other input parameters, and it
did not become trapped in a “local minimum” as
could occur with other optimization techniques.
The following sections discuss the need for genetic
optimization and our experiments.

2. NEED FOR OPTIMIZATION OF
NEURAL NETWORK

The problem of neural network design comes down
to searching for an architecture that performs best
on some specified task according to explicit
performance criteria. This process in turn can be
viewed as searching the surface defined by levels of
trained network performance above the space of
possible neural network architectures. Since the
number of possible hidden neurons and
connections is unbounded, the surface is infinitely
large. Since changes in the number of hidden
neurons or connections must be discrete, and can

have a discontinuous effect on the network’s
performance, the surface is undifferentiable. The
mapping from network design to network
performance after learning is indirect, strongly
epistatic, and dependent on initial conditions (e.g.
random weights), so the surface is complex and
noisy [Miller et. al 1989]. Structurally similar
networks can show very different information
processing capabilities, so the surface is deceptive;
conversely, structurally dissimilar networks can
show very similar capabilities, so the surface is
multimodal. Hence we seek an automated method
for searching the vast, undifferentiable, epistatic,
complex, noisy, deceptive, multimodal surface.

If a neural network has too many hidden neurons,
it will almost exactly learn, or memorize, the
training examples, but it will not perform as well
recognizing new data after the training process is
complete. If a neural network has too few hidden
neurons, it will have insufficient memory capacity
to learn all the different types of training examples.
A genetic algorithm is used to optimize the
minimum number of training data sets required to
train the neural network and the minimum number
of hidden neurons in a three layer neural network
architecture. The objective of the genetic
algorithm to eliminate training cases that make it
difficult for a neural network to differentiate all
output classifications and to avoid discarding data
[Jurgen 1995; Hancock 1992; Hochman et. al
1996; Kroning 1994]. The fitness function used
for the genetic algorithm is chosen such that it will
satisfy the conflicting requirements of training-data
size reduction. The fitness function for our genetic
algorithm performs the following calculations for
each chromosome in the population:

• Count the number of inputs ignored.

• Train the neural network for 500 learning
cycles. Sum the training error for the last 40
cycles. Beyond this training, the convergence
of the neural network is not very significant.

• Calculate the fitness value for a chromosome
based on cumulative learning error, the
number of input neurons that are ignored, and
the number of hidden layer neurons.

The fitness function should minimize the training
error, the number of hidden neurons and the
number of inputs that are ignored (i.e., avoids
discarding training cases except when absolutely
necessary).

In order to optimise the structure of neural network
using genetic algorithm, chromosome is encoded
using information from input as well hidden
neurons. We adopted at least 15 hidden neurons,
and this value can be encoded in four bits. At
least one bit in the chromosome represents
information from the input neuron. When a fit
chromosome is found, that chromosome is used to
specify the number of hidden layer neurons.

3. GENETIC ALGORITHM

The basic genetic algorithm comprises four
important steps [see Goldberg 1988]:

• The first step is the creation of the initial
population of chromosomes either randomly
or by perturbing an input chromosome. How
the initialization is done is not critical as long
as the initial population spans a wide range of
variable settings (i.e., has a diverse
population). Thus, if explicit knowledge about
the system being optimized is available that
information can be included in the initial
population.

• In the second step, evaluation and the fitness
function is computed. The goal of the fitness
function is to numerically encode the
performance of the chromosome. For this
problem of optimization, the choice of fitness
function is the most critical step.

• The third step is the exploitation or natural
selection step. In this step, the chromosomes
with the largest fitness scores are placed one or
more times into a mating subset in a semi-
random fashion. Chromosomes with low
fitness scores are removed from the
population. There are several methods for
performing exploitation. In the binary
tournament mating selection method, each
chromosome in the population competes for a
position in the mating subset. Two
chromosomes are drawn at random from the
population, the chromosome with the highest
fitness score is placed in the mating subset.
Both chromosomes are returned to the
population and another tournament begins.
This procedure continues until the mating
subset is full. A characteristic of this scheme
is that the worst chromosome in the
population will never be selected for inclusion
in the mating subset.

• The fourth step, exploration, consists of
recombination and mutation operators. Two
chromosomes (parents) from the mating subset
are randomly selected to be mated. The
probability that these chromosomes are
recombined (mated) is a user-controlled option
and is usually set to a high value (e.g., 0.95).
If the parents are allowed to mate, a
recombination operator is employed to
exchange genes between the two parents to
produce two children. If they are not allowed
to mate, the parents are placed into the next
generation unchanged. The two most common
recombination operators are the one-point and
two-point crossover methods. In the one-point
method, a crossover point is selected along the
chromosome and the genes up to that point are
swapped between the two parents. In the two-

point method, two crossover points are
selected and the genes between the two points
are swapped. The children then replace the
parents in the next generation. A third
recombination operator, which has recently
become quite popular, is the uniform
crossover method. In this method,
recombination is applied to the individual
genes in the chromosome. If crossover is
performed, the genes between the parents are
swapped and if no crossover is performed the
genes are left intact. This crossover method
has a higher probability of producing children
that are very different than their parents, so the
probability of recombination is usually set to
a low value (i.e. 0.1). The probability that a
mutation will occur is another user-controlled
option and is usually set to a low value (e.g.,
0.01) so that good chromosomes are not
destroyed. A mutation simply changes the
value for a particular gene.

After the exploration step, the population is full of
newly created chromosomes (children) and steps
two through four are repeated. This process
continues for a fixed number of generations. For
this application, the most widely used binary
coded GA is used for encoding genes. In binary
coding each chromosome is comprised of zeroes
and ones where each bit represents a gene. To
formulate the chromosome for optimization, the
bit string is concatenated with the bit strings from
the other variables to form one long binary string.
We adopted a binary coding mechanism for
creating the chromosomes.

 4. EXPERIMENTS

The record of salinity fluctuations at gauging
stations is a record of cyclic salinity intrusion
within an estuary, and as such, the dominant
signal is from tidal forcing (see Figure 2.). The
observed data and hence the selected training data
set is a time series. The time series is a well-
defined pattern for this problem; this means that a
few data points that are not well fit to the time
series should not be used to create the neural
network training set for learning because these data
will make the learning much harder. The data
available for years prior to 1996 were collected by
multiple agencies, each using their own time
intervals, and hence are of poor quality for testing
long-term trends in salinity in the Bay Delta
region. Since 1997, data has been collected by the
State using common time intervals at all sites. In
the previous neural network paper [Rajkumar and
Johnson 2001], we considered two data sets (i.e.,
April 97 and August 98 for prediction)
(http://www.iep.ca.gov). The training data pairs

(15 inputs and 1 output) for this neural network are
from 1 January 1996 to 30 March 1997 (7669
pairs). The April 1997 prediction data consists of
15 input variables and 1 output variable with 260
training pairs (from 2 - 14 April 1997). The input
variables have been selected throughout the Bay
Delta area to characterise the entire fluctuation of
salinity intrusion [Rajkumar and Johnson 2001].
August 1998 had similar types of inputs and
outputs, but the training pairs were increased to
17,154 (1 Jan 1996 to 31 Jul 1998).

The main objectives of optimizing the neural
network [Bigus and Bigus 2001; Watson 1997] are
to (i) minimize the number of training data sets,
and (ii) minimize the number of hidden neurons.
In both the previous paper and this one, the April
1997 data set is used for reduction in training data
size and reduction in hidden number of neurons.
Both 1997 and 1998 were classified as
(abnormally) wet years by the California
Department of Water Resources; the 1997 wet year
was worse than 1998 wet year. We used the
April1997 wet year data pairs for training data size
reduction because it shows more variability and
distinct features that enhance the neural network
training. (i) To accomplish minimizing the
number of training data sets, we presented the
January 96 – March 97 training pairs (7669) for
data size reduction. During the first pass of
training, 5 data sets were eliminated. In the next
round of training, 3 data pairs were eliminated.
Twenty training cycles were performed on the same
data, and 72 data pairs were eliminated from the
original data, reducing it to 7597 pairs. That is,
approximately 1% of total data were eliminated.
These data were eliminated because they were
considered outliers to the time series record, and
including them merely delayed convergence for
neural network training. Beyond 20 training
cycles, very few data pairs were eliminated, and
elimination required more time, so 20 cycles were
considered sufficient for appropriate data size
reduction. (ii) To accomplish optimizing the
number of hidden neurons in the neural network,
we used this same 7597 data pairs that had been
used for training. Based on these data pairs, the
number of hidden neurons were reduced from 30
(chromosome 5 bit encoding) to 8 hidden neurons.
This resulted in a fast prediction of salinity at
Carquinez Strait. The final architecture of the
neural network is thus 15-8-1 [input-hidden-
output].

Figure 2 presents a comparison between real-time
salinity data monitored at Carquinez Strait, plotted
against the neural network prediction and the GA-
optimised neural network prediction for this data.
The figure shows substantial improvement of fit
when the network is optimized by the genetic
algorithm. Note that in the first week of April, the
GA optimised neural network has performed very
well compared to the second week of April. In the

first week (early spring) of April, there are not
many spikes in the pattern, whereas the second
week, the pattern has alternate spikes, which is
varying between 5000 to 25000 Micromhos/cm.
These spikes can be expained as follows. In the
Bay, salinity intrusion will reach its greatest
starting from mid-spring to mid-summer. By
mid-spring, effects other than simple tidal-forcing
are coming into play. First, agriculture districts
are drawing out substantially more fresh water
allowing for greater salinity intrusion. Second,
dam controls are regulating fresh water flow into
the delta from spring runoff. Hence the time series
is more complex than the originally trained
network would anticipate, and the GA-optimized
neural net reflects this variability through
recognizing the new spikes in the pattern. This is
why we also selected August data as a calibration
data set for our system.

As a performance index of the prediction of the
neural network, the correlation coefficient of the
measured time series data with respect to the neural
network predicted time series is 0.747. The GA
optimised neural network predicted a much closer
time series for the Carquinez Strait (correlation
coefficient 0.904); it predicted 82.63 % over fitted
and 17.37 % under fitted. The Neural network
without optimization predicted 59% over fitted and
41 % under fitted. Over fitting and under fitting
are computed with respect to the measured time
series. The under fitting or over fitting was in
±10% data range. The results of the GA optimised
neural network are much better than the neural
network prediction above. The software was
developed in Java [Bigus and Bigus 2001; Watson
1997] and the results were obtained using a PC of
1 Ghz Pentium IV. It took 8 hrs to optimise the
training data and neural network architecture for
genetic algorithm.

 5. CONCLUSIONS

When not much is known about the response
surface and computing the gradient is either
computationally intensive or numerically unstable,
a genetic algorithm is efficient. In our problem,
we would like to get an optimized neural network
architecture and minimum data set. This has been
accomplished within 500 training cycles of a
neural network. Repeated execution of a neural
network takes 8 hours to create the optimized data
set and architecture. We tried to use the original
data set for the GA optimised neural network to
predict the salinity at Carquinez Strait, but it has
not performed efficiently. After removing 72
training pairs (outliers), GA has produced much
better results. The neural network constructed is a
feed forward neural network with a back
propagation learning mechanism. The main goal
has been to free the network design process from
constraints of human biases, and to discover better

forms of neural network architectures. The
automation of the network architecture search by
genetic algorithms seems to have been the best
way to achieve this timely goal. We further more
believe that this method will generalize to other
similar environmental problems.

6. ACKNOWLEDGEMENTS

The authors wish to thank Jorge Bardina, Joan
Walton and Tarang Patel for their valuable
suggestions for improvement.

7. REFERENCES

Bigus P.J, Bigus J, Constructing intelligent
agents using java, Wiley computer
publishing, 2001.

Chung F, Modeling flow salinity relationships in
the Sacramento-San Joaquin delta using
artificial neural networks, Technical report
OSP-99-1, Department of Water resources
office of SWP planning, California, 1999.

Goldberg D.E, Genetic algorithms in search,
optimization and machine learning, Addison-
Wesley 1988.

Hancock, P. J. B., Pruning Neural Nets by Genetic
Algorithm, Proceedings of the International
Conference on Artificial Neural Networks,
Brighton, 1992.

Hochman, R.; Khoshgoftaar, T.M.; Allen, E.B.;
Hudepohl, J.P, Using the genetic algorithm
to build optimal neural networks for fault-
prone module detection, Proceedings of the
The Seventh International Symposium on
Software Reliability Engineering (ISSRE
'96), IEEE Press 1996.

Holland J.H, Adaptation in natural and artificial
systems, Ann Abor, MI : University of
Michigan press, 1975.

Jurgen B., Evolutionary algorithms for neural
network design and training, Proceedings of
the first Nordic workshop on genetic
algorithms and its applications, Vasa
Finland, 1995.

Korning P.G, Training of neural networks by
means of genetic algorithm working on very
long chromosomes, Technical Report,
Computer Science Department, Aarhus,
Denmark, 1994.

Masters T, Practical neural network recipes in
C++, Academic press Inc. 1993.

Miller G, Todd P., and Hegde.S, Designing neural
networks using genetic algorithms,
Proceedings of third international conference
on genetic algorithms, George Mason
University, 1989.

Rajkumar T., Johnson M.,. Prediction of salinity
in San Francisco bay delta using neural
network, Proceedings of IEEE SMC.,
Arizona, 2001.

Watson M, Intelligent Java applications, Morgan
Kaufmann publishers, 1997.

Winkler E.D., Preliminary development of a
statistical approach to salinity modelling in
the Western Sacramento-San Joaquin Delta
and Suisun Bay, California department of
water resources, Technical information record,
Study code no. 1463-CD-04, 1985.

Appendix I

Locations in Bay-Delta Region

RSAC045 Selby (Wickland Oil Pier)
SHWSF001 Central Bay at Presidio Fort Point
RSAC054 Sacramento River at Martinez

(Carquinez Strait)
RSAC064 Sacramento River at Port Chicago
SLMZU011 Montezuma Slough at Beldons
RCSM075 Consumnes River at Michigan Bar
RSAC101 Sacramento River at Rio Vista

Bridge
RSAC155 Sacramento River at Freeport
CHGRL009 Grantline Canal at Tracy Blvd

Bridge
ROLD040 Old River at Clifton Court Ferry
RSAN007 San Joaquin River at Antioch

betweens lights 7 & 8
RSAN112 San Joaquin River at Vernallis
CHDMC006 Delta Mendota Canal at the head

(beginning) of the concrete liner
CHSWP003 State water project California at

Harvey O.Banks Delta Pumping
Plant

CHDMC004 CDEC TRD Delta Mendota Canal
at Tracy Pumping plant

CHCCC006 CCWD Pumping station, Contra
Costa Canal at Pumping Plant 1

Figure 1. Location of USGS, NOAA and CADWR monitoring stations in the San Francisco Bay Delta

Comparison of Measured Vs NNL predicted Vs GA optimised NNL data

0

5000

10000

15000

20000

25000

30000

2-Apr-97 7-Apr-97 11-Apr-97

Date

E
C

 (
M

ic
ro

m
ho

s/
cm

)

Measured

NNL Predicted

GA Predicted

Figure 2. Comparison of Salinity prediction at Carquinez Strait with neural network and GA optimised
neural network

